Clinically relevant progestins regulate neurogenic and neuroprotective responses in vitro and in vivo.
نویسندگان
چکیده
Previously, we demonstrated that progesterone (P(4)) promoted adult rat neural progenitor cell (rNPC) proliferation with concomitant regulation of cell-cycle gene expression via the P(4) receptor membrane component/ERK pathway. Here, we report the efficacy of seven clinically relevant progestins alone or in combination with 17β-estradiol (E(2)) on adult rNPC proliferation and hippocampal cell viability in vitro and in vivo. In vitro analyses indicated that P(4), norgestimate, Nestorone, norethynodrel, norethindrone, and levonorgestrel (LNG) significantly increased in rNPC proliferation, whereas norethindrone acetate was without effect, and medroxyprogesterone acetate (MPA) inhibited rNPC proliferation. Proliferative progestins in vitro were also neuroprotective. Acute in vivo exposure to P(4) and Nestorone significantly increased proliferating cell nuclear antigen and cell division cycle 2 expression and total number of hippocampal 5-bromo-2-deoxyuridine (BrdU)-positive cells, whereas LNG and MPA were without effect. Mechanistically, neurogenic progestins required activation of MAPK to promote proliferation. P(4), Nestorone, and LNG significantly increased ATP synthase subunit α (complex V, subunit α) expression, whereas MPA was without effect. In combination with E(2), P(4), Nestorone, LNG, and MPA significantly increased BrdU incorporation. However, BrdU incorporation induced by E(2) plus LNG or MPA was paralleled by a significant increase in apoptosis. A rise in Bax/Bcl-2 ratio paralleled apoptosis induced by LNG and MPA. With the exception of P(4), clinical progestins antagonized E(2)-induced rise in complex V, subunit α. These preclinical translational findings indicate that the neurogenic response to clinical progestins varies dramatically. Progestin impact on the regenerative capacity of the brain has clinical implications for contraceptive and hormone therapy formulations prescribed for pre- and postmenopausal women.
منابع مشابه
PRE- AND POSTJUNCTIONAL α-ADRENOCEPTORS IN RABBIT ARTICULAR BLOOD VESSELS
Previous in vitro work on rabbit knee joint vessels showed that vasoconstrictor effects of nerve stimulation and administration of α-adrenoceptor agonists were mediated predominantly by α1-adrenoceptors5,9 The present experiments were performed to assess the nature of α-adrenoceptor subtypes within these blood vessels in vivo. Dose/response relationships for adrenaline and noradrenaline pr...
متن کاملChrysin Reduced Acrylamide-Induced Neurotoxicity in Both in vitro and in vivo Assessments
Background: Acrylamide (ACR) is a well-known industrial toxic chemical that produces neurotoxicity, which is characterized by progressive central and peripheral neuronal degeneration. Chrysin is a natural, biologically active flavonoid compound, which is commonly found in many plants. The antioxidant and neuroprotective properties of chrysin have been demonstrated. Methods: In this study, the ...
متن کاملLinarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo
Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in vitro and ex vivo. Ellman’s colorimetric method was used for...
متن کاملLinarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo
Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in vitro and ex vivo. Ellman’s colorimetric method was used for...
متن کاملA select combination of clinically relevant phytoestrogens enhances estrogen receptor beta-binding selectivity and neuroprotective activities in vitro and in vivo.
We have previously shown that a number of naturally occurring phytoestrogens and derivatives were effective to induce some measures of neuroprotective responses but at a much lower magnitude than those induced by the female gonadal estrogen 17beta-estradiol. In the present study, we sought to investigate whether a combination of select phytoestrogens could enhance neural responses without affec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 151 12 شماره
صفحات -
تاریخ انتشار 2010